ObrazovanieRussia.ru
Введение Счёт, единица и число Устная нумерация Письменная нумерация Натуральные числа Количественный и порядковый счёт Разряды и классы Разрядные слагаемые Числовые и буквенные выражения Сравнение Арифметические действия Определение и знаки Действия первой и второй ступени Порядок действий Проценты Увеличение числа Уменьшение числа Сложение Слагаемые и сумма Сложение и вычитание с нулём Законы сложения Группировка слагаемых Округление при сложении Изменение суммы Прибавление суммы к числу и числа к сумме Сложение столбиком Нахождение неизвестного слагаемого Подобные слагаемые С переходом через десяток Таблица сложения Вычитание Уменьшаемое, вычитаемое и разность Вычитание столбиком Вычитание числа из суммы Вычитание суммы из числа Округление при вычитании С переходом через десяток Изменение разности Умножение Множимое, множитель и произведение Умножение на единицу и на ноль Законы умножения Умножение суммы на число Умножение числа на сумму Умножение числа на произведение Умножение двузначного числа на однозначное Изменение произведения Умножение столбиком Степень числа Таблица умножения Деление Делимое, делитель и частное Деление двузначного числа на однозначное Деление с остатком Свойства деления Признаки делимости Свойства делимости Изменение частного Деление столбиком Среднее арифметическое Делимость чисел Кратное и делитель Простые и составные числа Разложение числа на простые множители Нахождение всех делителей числа Наибольший общий делитель Как найти НОД Наименьшее общее кратное Меры и величины Измерение величин Единицы измерения Сложение и вычитание величин Обыкновенные дроби Обыкновенные дроби Числитель и знаменатель Правильные и неправильные дроби Основное свойство дроби Сокращение дробей Общий знаменатель Сравнение дробей Сложение Вычитание Умножение и деление Возведение в степень Взаимно обратные числа Смешанные числа Смешанные числа Перевод неправильной дроби в смешанное число Перевод смешанного числа в дробь Сравнение Сложение Вычитание Умножение и деление Возведение в степень Десятичные дроби Десятичные дроби Перевод дробей Сравнение Свойство Сложение десятичных дробей Перенос запятой Умножение и деление Округление чисел Отношения и пропорции Отношение чисел Пропорции Задачи и задания Системы счисления Определение Десятичная система Римская система Перевод из одной системы в другую Двоичная арифметика Решение задач На разностное сравнение На сложение и вычитание На умножение и деление На приведение к единице На кратное сравнение На части На уравнивание На дроби На совместную работу На цену, количество и стоимость На скорость, время и расстояние На нахождение по двум суммам неизвестного На нахождение по двум разностям неизвестного На встречное движение На противоположное движение На одно направление На движение по реке Приложение Таблица простых чисел Латинский алфавит Онлайн калькуляторы

Законы умножения

Переместительный закон умножения

Если множимое и множитель поменять местами, то произведение не изменится. Это можно легко проверить при подсчёте двумя способами числа звёздочек представленных на рисунке:

Переместительный закон умножения

3 + 3 + 3 + 3 = 4 + 4 + 4

Так как множимое и множитель можно менять местами их ещё называют сомножителями или просто множителями.

Таким образом, для любых натуральных чисел  a  и  b  верно равенство:

a · b = b · a,

выражающее переместительный закон умножения:

От перестановки сомножителей произведение не меняется.

Сочетательный закон умножения

Произведение чисел  3,  2  и  4  не изменится, если из них какие-нибудь два числа заменить их произведением:

3 · 2 · 4 = 3 · (2 · 4) = 3 · 8 = 24,

3 · 2 · 4 = (3 · 2) · 4 = 6 · 4 = 24.

Таким образом, для любых натуральных чисел  ab  и  c  верно равенство:

a · b · c = (a · b) · c = a · (b · c),

выражающее сочетательный закон умножения:

Произведение не изменится, если какую-либо группу сомножителей заменить их произведением.

Распределительный закон умножения

Для любых натуральных чисел верны равенства:

m · (a + b + ...) = m · a + m · b + ...

(a + b + ...) · m = a · m + b · m + ... ,

выражающие распределительный закон умножения:

Чтобы число умножить на сумму чисел, можно это число умножить отдельно на каждое слагаемое и полученные произведения сложить.

Чтобы сумму чисел умножить на число, можно каждое слагаемое отдельно умножить на число и полученные произведения сложить.

Распределительный закон умножения можно легко проверить при подсчёте двумя способами числа звёздочек, представленных на рисунке:

Распределительный закон умножения

Первый: в каждом ряду расположено  3  жёлтых и  5  зелёных звёздочек, то есть всего в каждом ряду  (3 + 5)  звёздочек. В четырёх рядах всего  (3 + 5) · 4  звёздочек.

Второй: жёлтые звёздочки расположены в четыре ряда по  3  звёздочки в каждом, то есть всего жёлтых звёздочек  3 · 4,  а зелёных —  5 · 4.  Всего звёздочек  3 · 4 + 5 · 4.

Кроме того, для любых натуральных чисел (если уменьшаемое больше или равно вычитаемому) верны равенства:

m · (a - b - ...) = m · a - m · b - ...

(a - b - ...) · m = a · m - b · m - ...

Например,  6 · (4 - 2) = 6 · 4 - 6 · 2.

Переход от умножения:

m · (a + b + ...)

и

m · (a - b - ...)

соответственно к сложению и вычитанию:

m · a + m · b + ...

и

m · a - m · b - ...

называется раскрытием скобок.

Переход от сложения и вычитания:

m · a + m · b + ...

и

m · a - m · b - ...

к умножению:

m · (a + b + ...)

и

m · (a - b - ...)

называется вынесением общего множителя за скобки.