ObrazovanieRussia.ru
Введение Отличия алгебры от арифметики Множества Стандартный вид числа Числовая ось Координатная плоскость Числовые промежутки Расстояние между точками Греческий алфавит Алгебраические выражения Определение и виды Названия выражений Свойства сложения Свойства умножения Алгебраическая сумма Раскрытие скобок Равенство Тождество Целые числа Определение и сравнение Сложение и вычитание Умножение и деление Противоположные числа Рациональные числа Определение и сравнение Действия с рациональными числами Отрицательные дроби Модуль числа Степени и корни Умножение и деление степеней Свойства степени Первая и нулевая степень Отрицательная степень Корень из числа Таблица квадратных корней Извлечение корня Дробная степень Иррациональные выражения Одночлены и многочлены Одночлены Степень одночлена Сложение и вычитание одночленов Умножение одночленов Деление одночленов Многочлены Сложение и вычитание многочленов Умножение одночлена на многочлен Умножение многочлена на многочлен Квадрат суммы и разности, разность квадратов Вынесение общего множителя за скобки Разложение способом группировки Формулы сокращённого умножения Уравнения Уравнение и корни Преобразование Решение уравнений с одним неизвестным Степень уравнения Системы уравнений Квадратные уравнения Дискриминант Неполные квадратные уравнения Теорема Виета Биквадратные уравнения Неравенства Описание и свойства Сложение и умножение С одной переменной Алгебраические дроби Сокращение Приведение к общему знаменателю Сложение и вычитание Умножение и деление Пропорциональность Прямая и обратная Пропорциональное деление Задачи на пропорциональное деление Функции Определение Способы задания Графики функций Арифметическая прогрессия Определение и свойство Формула n-го члена Сумма членов Геометрическая прогрессия Логарифмы Описание и свойства Десятичные логарифмы Натуральные логарифмы

Умножение и деление алгебраических дробей

Умножение дробей

Чтобы умножить одну алгебраическую дробь на другую, надо умножить числитель первой дроби на числитель второй дроби (полученное произведение будет числителем результата) и отдельно умножить знаменатель первой дроби на знаменатель второй (полученное произведение будет знаменателем результата).

Правило умножения алгебраических дробей в виде формулы:

a · c = ac ,
bdbd

где  b≠0  и  d≠0.

Пример. Выполнить умножение алгебраических дробей:

2a2 · a + b .
a2 - b2a

Решение: Перед тем, как приступать к умножению дробей, желательно разложить их числители и знаменатели на множители — это поможет сократить алгебраическую дробь, которая получится в результате:

2a2 · a + b = 2a2 · a + b =
a2 - b2a(a + b)(a - b)a

2a2(a + b) .
(a + b)(a - b)a

Теперь сокращаем полученную дробь:

2a2(a + b) = 2a .
(a + b)(a - b)aa - b

Чтобы умножить многочлен на алгебраическую дробь или алгебраическую дробь на многочлен, надо умножить многочлен на числитель дроби, а знаменатель оставить без изменений.

Пример. Выполнить умножение многочлена на алгебраическую дробь:

(2x + 6) · x - 2 .
x + 3

Решение:

(2x + 6) · x - 2 = (2x + 6)(x - 2) .
x + 3x + 3

Разложим числитель на множители и сократим дробь:

(2x + 6)(x - 2) = 2(x + 3)(x - 2) =
x + 3x + 3

= 2(x - 2) = 2x - 4.


Правило умножения алгебраической дроби на многочлен (или умножение многочлена на алгебраическую дробь) в виде формулы:

a · b = ab    или    b · a = ab ,
cccc

где c≠0.

Возведение алгебраических дробей в степень

Чтобы возвести в степень алгебраическую дробь, надо возвести в эту степень отдельно её числитель и отдельно знаменатель.

Правило возведения алгебраических дробей в степень в виде формулы:

(a)nan .
bbn

Пример. Выполнить возведение в степень:

а) (a2)3 ;          б) (-2x3)2.
by2

Решение:

а) (a2)3(a2)3 = a6 ;
b(b)3b3

б) (-2x3)2(2x3)2 = 4x6.
y2(y2)2y4

Посмотреть правила возведения степени в степень вы можете на странице Свойства степени.

Деление дробей

Чтобы разделить одну алгебраическую дробь на другую, надо дробь, выступающую в качестве делителя, заменить на обратную ей дробь и после этого умножить первую дробь на вторую.

Правило деления алгебраических дробей в виде формулы:

a : c = a · d = ad.
bdbcbc

Следовательно, частное двух дробей равно произведению первой дроби и перевёрнутой второй дроби.

Пример. Выполнить деление алгебраических дробей:

ab + ac : ab - ac.
bcbc

Решение: Переворачиваем делитель и умножаем дроби по правилам умножения:

ab + ac : ab - ac = ab + ac · bc =
bcbcbcab - ac

(ab + ac)bc.
bc(ab - ac)

Теперь можно приступать к сокращению полученной дроби:

(ab + ac)bc = ab + ac =
bc(ab - ac)ab - ac

a(b + c) = b + c.
a(b - c)b - c

Чтобы разделить многочлен на алгебраическую дробь, надо перевернуть дробь и выполнить умножение многочлена на полученную дробь по правилам умножения.

Правило деления многочлена на алгебраическую дробь в виде формулы:

ab = a · c = ac.
cbb

Пример. Выполнить деление:

6xy2x .
y

Решение:

6xy2x = 6xy2 · y = 6y3.
yx

Чтобы разделить алгебраическую дробь на многочлен, надо представить многочлен в виде дроби и перевернуть её, затем выполнить умножение дробей по правилам умножения.

Правило деления алгебраической дроби на многочлен в виде формулы:

a : ca : c = a · 1 = a.
bb1bcbc

Пример. Выполнить деление:

2xy : 6y.
3

Решение:

2xy : 6y2xy : 6y = 2xy · 1 =
33136y

2xy = x.
18y9