ObrazovanieRussia.ru
Введение Счёт, единица и число Устная нумерация Письменная нумерация Натуральные числа Количественный и порядковый счёт Разряды и классы Разрядные слагаемые Числовые и буквенные выражения Сравнение Арифметические действия Определение и знаки Действия первой и второй ступени Порядок действий Проценты Увеличение числа Уменьшение числа Сложение Слагаемые и сумма Сложение и вычитание с нулём Законы сложения Группировка слагаемых Округление при сложении Изменение суммы Прибавление суммы к числу и числа к сумме Сложение столбиком Нахождение неизвестного слагаемого Подобные слагаемые С переходом через десяток Таблица сложения Вычитание Уменьшаемое, вычитаемое и разность Вычитание столбиком Вычитание числа из суммы Вычитание суммы из числа Округление при вычитании С переходом через десяток Изменение разности Умножение Множимое, множитель и произведение Умножение на единицу и на ноль Законы умножения Умножение суммы на число Умножение числа на сумму Умножение числа на произведение Умножение двузначного числа на однозначное Изменение произведения Умножение столбиком Степень числа Таблица умножения Деление Делимое, делитель и частное Деление двузначного числа на однозначное Деление с остатком Свойства деления Признаки делимости Свойства делимости Изменение частного Деление столбиком Среднее арифметическое Делимость чисел Кратное и делитель Простые и составные числа Разложение числа на простые множители Нахождение всех делителей числа Наибольший общий делитель Как найти НОД Наименьшее общее кратное Меры и величины Измерение величин Единицы измерения Сложение и вычитание величин Обыкновенные дроби Обыкновенные дроби Числитель и знаменатель Правильные и неправильные дроби Основное свойство дроби Сокращение дробей Общий знаменатель Сравнение дробей Сложение Вычитание Умножение и деление Возведение в степень Взаимно обратные числа Смешанные числа Смешанные числа Перевод неправильной дроби в смешанное число Перевод смешанного числа в дробь Сравнение Сложение Вычитание Умножение и деление Возведение в степень Десятичные дроби Десятичные дроби Перевод дробей Сравнение Свойство Сложение десятичных дробей Перенос запятой Умножение и деление Округление чисел Отношения и пропорции Отношение чисел Пропорции Задачи и задания Системы счисления Определение Десятичная система Римская система Перевод из одной системы в другую Двоичная арифметика Решение задач На разностное сравнение На сложение и вычитание На умножение и деление На приведение к единице На кратное сравнение На части На уравнивание На дроби На совместную работу На цену, количество и стоимость На скорость, время и расстояние На нахождение по двум суммам неизвестного На нахождение по двум разностям неизвестного На встречное движение На противоположное движение На одно направление На движение по реке Приложение Таблица простых чисел Латинский алфавит Онлайн калькуляторы

Степень числа

Степень числа — это выражение, обозначающее краткую запись произведения одинаковых сомножителей.

Рассмотрим умножение одинаковых чисел, например:

5 · 5 · 5 = 125.

Произведение  5 · 5 · 5  можно записать так:  53  (пять в третьей степени). Выражение  53  — это степень. Следовательно,

5 · 5 · 5 = 53 = 125.

Рассмотрим выражение  53 . В этом выражении число  5  — основание степени, а число  3  — показатель степени.

основание и показатель степени

Основание степени — это повторяющийся множитель. Показатель степени — это число, указывающее количество повторений, то есть показатель степени показывает сколько одинаковых множителей содержится в произведении.

Читаются степени так:

Пример. Записать в виде степени:

a) 5 · 5;

б) 10 · 10 · 10 · 10;

в) 8 · 8 · 8.

Решение:

a) 5 · 5 = 52;

б) 10 · 10 · 10 · 10 = 104;

в) 8 · 8 · 8 = 83.

Возведение в степень

Возведение числа в степень — это вычисление произведения одинаковых множителей. Например, возвести число  2  в третью степень  (23)  — это значит найти произведение  2 · 2 · 2 , то есть

23 = 2 · 2 · 2 = 8.

Результат возведения в степень называется степенью (также как и само выражение, значение которого вычисляется). В выражении:

23 = 8,

2  — это основание степени,  3  — показатель степени,  8  — степень.

Пример. Вычислите:

a) 112;

б) 25;

в) 104.

Решение:

a) 112 = 11 · 11 = 121;

б) 25 = 2 · 2 · 2 · 2 · 2 = 32;

в) 104 = 10 · 10 · 10 · 10 = 10000.

Выражения со степенями. Порядок действий

Если выражение не содержит скобки и содержит степени, то сначала выполняется возведение в степень в порядке следования степеней (слева направо), а затем все остальные арифметические действия. Если выражение содержит скобки, то сначала выполняются действия в скобках, с учётом всех правил порядка выполнения действий.

Рассмотрим два выражения:

52 + 22

и

(5 + 2)2

В соответствии с порядком выполнения действий в первом случае сначала выполняется возведение в степень, а затем вычисляется сумма. Во втором случае сначала вычисляется сумма, а затем результат возводится в квадрат.

52 + 22 = 25 + 4 = 29,

(5 + 2)2 = 72 = 49.

Пример 1. Найти значение выражения:

5 · (10 - 8)3.

Решение: Сначала выполняется действие, заключённое в скобки:

1) 10 - 8 = 2.

Затем, по правилам порядка действий, выполняется возведение в степень:

2) 23 = 2 · 2 · 2 = 8.

И последним действием вычисляется произведение:

3) 5 · 8 = 40.

Ответ:  5 · (10 - 8)3 = 40.

Пример 2. Вычислить:

a) (4 + 2) · 32;

б) 3 · 52 - 50;

в) 3 · 4 + 62.

Решение:

a) (4 + 2) · 32 = 54

  1. 4 + 2 = 6
  2. 32 = 9
  3. 6 · 9 = 54

б) 3 · 52 - 50 = 25

  1. 52 = 25
  2. 3 · 25 = 75
  3. 75 - 50 = 25

в) 3 · 4 + 62 = 48

  1. 62 = 36
  2. 3 · 4 = 12
  3. 12 + 36 = 48

Калькулятор возведения в степень

Данный калькулятор поможет вам выполнить возведение в степень. Просто введите основание с показателем степени и нажмите кнопку Вычислить.