Степень числа
Степень числа — это выражение, обозначающее краткую запись произведения одинаковых сомножителей.
Рассмотрим умножение одинаковых чисел, например:
5 · 5 · 5 = 125.
Произведение 5 · 5 · 5 можно записать так: 53 (пять в третьей степени). Выражение 53 — это степень. Следовательно,
5 · 5 · 5 = 53 = 125.
Рассмотрим выражение 53 . В этом выражении число 5 — основание степени, а число 3 — показатель степени.
Основание степени — это повторяющийся множитель. Показатель степени — это число, указывающее количество повторений, то есть показатель степени показывает сколько одинаковых множителей содержится в произведении.
Читаются степени так:
- 72 —
семь во второй степени
.
Вторую степень числа также называют квадратом этого числа. Следовательно, выражение 72 можно прочесть так:семь в квадрате
иликвадрат числа семь
. - 23 —
два в третьей степени
.
Третью степень числа также называют кубом этого числа. Следовательно, выражение 23 можно прочесть так:два в кубе
илидва куб
. - 64 —
шесть в четвёртой степени
. - 1015 —
десять в пятнадцатой степени
. - an —
a в энной степени
илиa в степени эн
.
Пример. Записать в виде степени:
a) 5 · 5;
б) 10 · 10 · 10 · 10;
в) 8 · 8 · 8.
Решение:
a) 5 · 5 = 52;
б) 10 · 10 · 10 · 10 = 104;
в) 8 · 8 · 8 = 83.
Возведение в степень
Возведение числа в степень — это вычисление произведения одинаковых множителей. Например, возвести число 2 в третью степень (23) — это значит найти произведение 2 · 2 · 2 , то есть
23 = 2 · 2 · 2 = 8.
Результат возведения в степень называется степенью (также как и само выражение, значение которого вычисляется). В выражении:
23 = 8,
2 — это основание степени, 3 — показатель степени, 8 — степень.
Пример. Вычислите:
a) 112;
б) 25;
в) 104.
Решение:
a) 112 = 11 · 11 = 121;
б) 25 = 2 · 2 · 2 · 2 · 2 = 32;
в) 104 = 10 · 10 · 10 · 10 = 10000.
Выражения со степенями. Порядок действий
Если выражение не содержит скобки и содержит степени, то сначала выполняется возведение в степень в порядке следования степеней (слева направо), а затем все остальные арифметические действия. Если выражение содержит скобки, то сначала выполняются действия в скобках, с учётом всех правил порядка выполнения действий.
Рассмотрим два выражения:
52 + 22
и
(5 + 2)2
В соответствии с порядком выполнения действий в первом случае сначала выполняется возведение в степень, а затем вычисляется сумма. Во втором случае сначала вычисляется сумма, а затем результат возводится в квадрат.
52 + 22 = 25 + 4 = 29,
(5 + 2)2 = 72 = 49.
Пример 1. Найти значение выражения:
5 · (10 - 8)3.
Решение: Сначала выполняется действие, заключённое в скобки:
1) 10 - 8 = 2.
Затем, по правилам порядка действий, выполняется возведение в степень:
2) 23 = 2 · 2 · 2 = 8.
И последним действием вычисляется произведение:
3) 5 · 8 = 40.
Ответ: 5 · (10 - 8)3 = 40.
Пример 2. Вычислить:
a) (4 + 2) · 32;
б) 3 · 52 - 50;
в) 3 · 4 + 62.
Решение:
a) (4 + 2) · 32 = 54
- 4 + 2 = 6
- 32 = 9
- 6 · 9 = 54
б) 3 · 52 - 50 = 25
- 52 = 25
- 3 · 25 = 75
- 75 - 50 = 25
в) 3 · 4 + 62 = 48
- 62 = 36
- 3 · 4 = 12
- 12 + 36 = 48
Калькулятор возведения в степень
Данный калькулятор поможет вам выполнить возведение в степень. Просто введите основание с показателем степени и нажмите кнопку Вычислить
.