ObrazovanieRussia.ru
Введение Счёт, единица и число Устная нумерация Письменная нумерация Натуральные числа Количественный и порядковый счёт Разряды и классы Разрядные слагаемые Числовые и буквенные выражения Сравнение Арифметические действия Определение и знаки Действия первой и второй ступени Порядок действий Проценты Увеличение числа Уменьшение числа Сложение Слагаемые и сумма Сложение и вычитание с нулём Законы сложения Группировка слагаемых Округление при сложении Изменение суммы Прибавление суммы к числу и числа к сумме Сложение столбиком Нахождение неизвестного слагаемого Подобные слагаемые С переходом через десяток Таблица сложения Вычитание Уменьшаемое, вычитаемое и разность Вычитание столбиком Вычитание числа из суммы Вычитание суммы из числа Округление при вычитании С переходом через десяток Изменение разности Умножение Множимое, множитель и произведение Умножение на единицу и на ноль Законы умножения Умножение суммы на число Умножение числа на сумму Умножение числа на произведение Умножение двузначного числа на однозначное Изменение произведения Умножение столбиком Степень числа Таблица умножения Деление Делимое, делитель и частное Деление двузначного числа на однозначное Деление с остатком Свойства деления Признаки делимости Свойства делимости Изменение частного Деление столбиком Среднее арифметическое Делимость чисел Кратное и делитель Простые и составные числа Разложение числа на простые множители Нахождение всех делителей числа Наибольший общий делитель Как найти НОД Наименьшее общее кратное Меры и величины Измерение величин Единицы измерения Сложение и вычитание величин Обыкновенные дроби Обыкновенные дроби Числитель и знаменатель Правильные и неправильные дроби Основное свойство дроби Сокращение дробей Общий знаменатель Сравнение дробей Сложение Вычитание Умножение и деление Возведение в степень Взаимно обратные числа Смешанные числа Смешанные числа Перевод неправильной дроби в смешанное число Перевод смешанного числа в дробь Сравнение Сложение Вычитание Умножение и деление Возведение в степень Десятичные дроби Десятичные дроби Перевод дробей Сравнение Свойство Сложение десятичных дробей Перенос запятой Умножение и деление Округление чисел Отношения и пропорции Отношение чисел Пропорции Задачи и задания Системы счисления Определение Десятичная система Римская система Перевод из одной системы в другую Двоичная арифметика Решение задач На разностное сравнение На сложение и вычитание На умножение и деление На приведение к единице На кратное сравнение На части На уравнивание На дроби На совместную работу На цену, количество и стоимость На скорость, время и расстояние На нахождение по двум суммам неизвестного На нахождение по двум разностям неизвестного На встречное движение На противоположное движение На одно направление На движение по реке Приложение Таблица простых чисел Латинский алфавит Онлайн калькуляторы

Разложение числа на простые множители

Простой множитель — это множитель, который представляет собой простое число.

Простые множители

Любое составное число можно представить в виде произведения простых чисел.

Пример. Представим в виде произведения простых множителей числа  4,  6  и  8:

4 = 2 · 2,

6 = 2 · 3,

8 = 2 · 2 · 2.

Правые части полученных равенств называются разложением на простые множители.

Разложение на простые множители

Разложение на простые множители — это представление составного числа в виде произведения простых множителей.

Разложить составное число на простые множители — значит представить это число в виде произведения простых множителей.

Простые множители в разложении числа могут повторяться. Повторяющиеся простые множители можно записывать более компактно — в виде степени.

Пример.

24 = 2 · 2 · 2 · 3 = 23 · 3.

Примечание. Простые множители обычно записывают в порядке их возрастания.

Как разложить число на простые множители

Последовательность действий при разложении числа на простые множители:

  1. Проверяем по таблице простых чисел, не является ли данное число простым.
  2. Если нет, то последовательно подбираем самое маленькое простое число из таблицы простых чисел, на которое данное число делится без остатка, и выполняем деление.
  3. Проверяем по таблице простых чисел, не является ли полученное частное простым числом.
  4. Если нет, то последовательно подбираем самое маленькое простое число из таблицы простых чисел, на которое полученное частное делится нацело, и выполняем деление.
  5. Повторяем пункты 3 и 4 до тех пор, пока в частном не получится единица.

Пример. Разложите число  102  на простые множители.

Решение:

Начинаем поиск наименьшего простого делителя числа  102.  Для этого последовательно подбираем самое маленькое простое число из таблицы простых чисел, на которое  102  разделится без остатка. Берём число  2  и пробуем разделить на него  102,  получаем:

102 : 2 = 51.

Число  102  разделилось на  2  без остатка, поэтому  2  — первый найденный простой множитель. Так как делимое равно делителю, умноженному на частное, то можно написать:

102 = 2 · 51.

Переходим к следующему шагу. Проверяем по таблице простых чисел, не является ли полученное частное простым числом. Число  51  составное. Начиная с числа  2,  подбираем из таблицы простых чисел наименьший простой делитель числа  51.  Число  51  не делится нацело на  2.  Переходим к следующему числу из таблицы простых чисел (к числу  3)  и пробуем разделить на него  51,  получаем:

51 : 3 = 17.

Число  51  разделилось на  3,  поэтому  3  — второй найденный простой множитель. Теперь мы можем и число  51  представить в виде произведения. Этот процесс можно записать так:

102 = 2 · 51 = 2 · 3 · 17.

Проверяем по таблице простых чисел, не является ли полученное частное простым числом. Число  17  простое. Значит наименьшим простым числом, на которое делится  17,  будет само это число:

17 : 17 = 1.

Так как в частном у нас получилась единица, то разложение закончено. Таким образом, разложение числа  102  на простые множители имеет вид:

102 = 2 · 3 · 17.

Ответ:  102 = 2 · 3 · 17.

В арифметике имеется ещё другая форма записи, облегчающая процесс разложения составных чисел. Она состоит в том, что весь процесс разложения записывают столбиком (в две колонки, разделённые вертикальной чертой). Слева от вертикальной черты, сверху вниз, записывают последовательно: данное составное число, затем получающиеся частные, а справа от черты — соответствующие наименьшие простые делители.

Пример. Разложить на простые множители число  120.

Решение:

Пишем число  120  и справа от него проводим вертикальную черту:

правило разложения на простые множители

Справа от черты записываем самый маленький простой делитель числа  120:

разложение чисел на простые множители 5 класс

Выполняем деление и получившееся частное  (60)  записываем под данным числом:

разложение натурального числа на простые множители

Подбираем наименьший простой делитель для  60,  записываем его справа от вертикальной черты под предыдущим делителем и выполняем деление. Продолжаем процесс до тех пор, пока в частном не получится единица:

разложение составных чисел на простые множители

В частном у нас получилась единица, значит разложение закончено. После разложения в столбик множители следует выписать в строчку:

120 = 23 · 3 · 5.

Ответ:  120 = 23 · 3 · 5.

Составное число разлагается на простые множители единственным образом.

Это значит, что если, например, число  20  разложилось на две двойки и одну пятёрку, то оно и всегда будет так разлагаться независимо от того, начнём ли мы разложение с малых множителей или с больших. Принято начинать разложение с малых множителей, т. е. с двоек, троек и т. д.

Калькулятор разложения на множители

Данный калькулятор поможет вам выполнить разложение числа на простые множители. Просто введите число и нажмите кнопку Разложить.