ObrazovanieRussia.ru
Введение Плоскость Сравнение геометрических фигур Геометрическая точка Периметр и площадь Линии Виды линий Прямая линия Луч Пересекающиеся прямые Параллельные прямые Признаки и свойства параллельных прямых Отрезок Сумма и разность отрезков Ломаная линия Углы Угол Измерение углов Сравнение углов Виды углов Смежные и вертикальные углы Углы при пересечении двух прямых Треугольники Треугольник Виды треугольников Сумма углов Внешние углы Признаки равенства Теорема Пифагора Подобные треугольники Периметр и площадь Окружность и круг Окружность Касательная и секущая Касание окружностей Центральный угол Вписанный угол Круг Длина окружности Многоугольники Описание Сумма углов Четырёхугольники Описание и виды Прямоугольник Периметр квадрата, прямоугольника и ромба Площадь прямоугольника и квадрата Параллелограмм Трапеция

Параллелограмм

Параллелограмм — это четырёхугольник, у которого противоположные стороны параллельны. Если у параллелограмма все углы прямые, то такой параллелограмм называется прямоугольником, а прямоугольник, у которого все стороны равны, называется квадратом.

Все параллелограммы обладают следующими свойствами:

Параллелограмм ABCD

Высота

Нижняя сторона параллелограмма называется его основанием, а перпендикуляр, опущенный на основание из любой точки противоположной стороны, — высотой.

Высота и основание параллелограмма ABCD

AD  — это основание параллелограмма,  h  — высота.

Высота выражает расстояние между противоположными сторонами, поэтому определение высоты можно сформулировать ещё так: высота параллелограмма — это перпендикуляр, опущенный из любой точки одной стороны на противоположную ей сторону.

Площадь

Для измерения площади параллелограмма можно представить его в виде прямоугольника. Рассмотрим параллелограмм  ABCD:

Площадь параллелограмма ABCD

Построенные высоты  BE  и  CF  образуют прямоугольник  EBCF  и два треугольника:  ΔABE  и  ΔDCF.  Параллелограмм  ABCD  состоит из четырёхугольника  EBCD  и треугольника  ABE,  прямоугольник  EBCF  состоит из того же четырёхугольника и треугольника  DCF.  Треугольники  ABE  и  DCF  равны (по четвёртому признаку равенства прямоугольных треугольников), значит и площади прямоугольника с параллелограммом равны, так как они составлены из равных частей.

Итак, параллелограмм можно представить в виде прямоугольника, имеющего такое же основание и высоту. А так как для нахождения площади прямоугольника перемножаются длины основания и высоты, значит и для нахождения площади параллелограмма нужно поступить также:

площадь  ABCD = AD · BE.

Из данного примера можно сделать вывод, что площадь параллелограмма равна произведению его основания на высоту.

Общая формула площади параллелограмма:

S = ah,

где  S  — это площадь параллелограмма,  a  — основание,  h  — высота.